
1

Multi-PF Net Device

Tariq Toukan

Netdev 0x18 Conference
Santa Clara, California
July 2024

2

Background

• Idea was originally presented by Achiad Shochat in Netdev conference 2.2.

• Matured, prioritized, implemented, and accepted upstream (v6.9).

3

• Describe problems

• Adapter-level solution

• Software model

• Design decisions

• Implementation details

• Performance numbers

• Future work

Agenda

44

Problem description
Problem #1: BW mismatch PCI vs NIC

5

Problem description
Problem #1: BW mismatch

• NIC connected to host

• Many possible combinations
for

• NIC speed x PCI speed

CPU

PCIe

NIC

PCIe I/F

PORT

PCIe

6

Problem description
Problem #1: BW mismatch PCI vs NIC

PCI speeds NIC speeds

• 200 Gbps (ConnectX-6)

• 400 Gbps (ConnectX-7)

• 800 Gbps (ConnectX-8)

• …

RAW bitrate

(GT/s)

Link BW

(Gbps)

x16 BW

(Gbps)

PCIe 1.0 2.5 2 32

PCIe 2.0 5 4 64

PCIe 3.0 8 8 128

PCIe 4.0 16 16 256

PCIe 5.0 32 32 512

PCIe 6.0 64 64 1024

vs.

7

Problem description
Problem #1: BW mismatch

• Example 1:
CPU

PCIe

Gen3 x16

NIC

128 Gbps

PCIe I/F

PORT

200 Gbps

PCIe

Gen3 x16

CPU

PCIe

Gen5 x16

NIC

512 Gbps

PCIe I/F

PORT

800 Gbps

PCIe

Gen5 x16

• Example 2:

88

Problem description
Problem #2:
CPU scaling on NUMA systems

9

Problem description
Problem #2: CPU scaling on NUMA systems

Inter-processor

• Intel:

• QuickPath Interconnect (QPI)

• Ultra Path Interconnect (UPI)

• ARM:

• Advanced Microcontroller Bus Architecture (AMBA)

• …

Network

CPU 1

Core


MEM

PCIe Socket

NIC

PCIe

I/F

Port

Core



CPU 0

Core

☺
MEM

PCIe Socket

Core

☺

inter-processor

1010

Solution
NIC port with multiple PCI buses

11

Solution
Adapter with multiple PCIe per port

• Adapter-level solution

• Adapter architecture that connects the NIC port
to the host through multiple PCIe interfaces

12

Solution
Adapter with multiple PCIe per port
Problem #1: BW mismatch, SOLVED

CPU

PCIe

Gen3 x16

NIC

128 Gbps

PCIe I/F

PORT

200 Gbps

PCIe

Gen3 x16

CPU

PCIe

Gen3 x16

NIC

128 Gbps

PCIe I/F

PORT

200 Gbps

PCIe

Gen3 x16

PCIe I/F

128 Gbps
SOLVED

13

Solution
Adapter with multiple PCIe per port

Problem #2: CPU scaling on NUMA systems, SOLVED

Network

CPU 1

Core


MEM

PCIe Socket

QPI/UPI

NIC

PCIe

I/F

Port

Core



CPU 0

Core

☺
MEM

PCIe Socket

Core

☺

SOLVED

Network

CPU 1

Core

☺
MEM

PCIe Socket

QPI/UPI

NIC

PCIe

I/F

Port

Core

☺

CPU 0

Core

☺
MEM

PCIe Socket

Core

☺

PCIe

I/F

14

Impact on Software

• OS is not aware of the network port sharing

• Multiple PCIe buses

• Each creates its own netdev

• Multiple net devices

• Multiple MAC addresses

• Multiple IP addresses

• …

• Confused applications

• Specify netdev or IP address to benefit from NUMA locality

• Totally different management

Physical

Elements NIC

PCIe I/F

Port

SW

Model

netdev

PCI

device

PCI

device

PCIe I/F

netdev

1515

Software Model
Multi-PF net device

16

Software Model
Multi-PF net device

Idea:

• Combine the multiple net devices into one

• Abstract the aggregation logic
in the vendor driver level (mlx5e)

• Expose the multi-PCI NIC port
to the network stack through a single netdev

Physical

Elements NIC

PCIe I/F

Port

SW

Model

netdev

PCI

device

PCI

device

PCIe I/F

Physical

Elements NIC

PCIe I/F

Port

SW

Model

netdev

PCI

device

PCI

device

PCIe I/F

netdev

Before:

After:

17

Software Model
Multi-PF net device

• Aligned with the netdev per port kernel convention

• Good layers partitioning

• PCI subsystem is unaware (untouched) - PCI device per PCI bus

• Net subsystem is unaware (untouched) – network device per network port

• The whole aggregation logic is encapsulated in the network device driver (mlx5e)

• Good reflection of reality: Symmetric modeling of the physical elements

• Good Out-Of-Box experience

• Driver takes care

• No necessary admin configurations

• Netdev software stats are consistent with the hardware port stats

Physical

Elements NIC

PCIe I/F

Port

SW

Model

netdev

PCI

device

PCI

device

PCIe I/F

18

Software Model
Multi-PF net device

• Designed and implemented to support more than two PFs per port

• However, we do not allow untested setting

• Tested and verified on 2 PFs

• #define MLX5_SD_MAX_GROUP_SZ 2

• When future hardware with more than 2 PFs per port becomes available

• Verify functionality

• Verify performance

• Increase the software constant

Physical

Elements NIC

PCIe I/F

Port

SW

Model

netdev

PCI

device

PCI

device

PCIe I/F

19

Design Decisions

One net device managing multiple PFs

• Device resources management

• Categorize into affined / non-affined resources

• Non-affined resources (RSS indirection table, flow steering) go through one designated bus

• Called “primary PF”

• All others are called “secondary PFs”

• Affined resources (TX/RX queues) go through their designated bus

• Each PF is already associated with a NUMA node

• Distribute datapath channels (TX/RX queues) equally between the PFs

• Properly set IRQ affinity and XPS

• Setting is applied by the driver in default

20

Design Decisions
Channels Distribution Policy

Channels distribution policy:

• Distribute the channels to PFs in round-robin

• Rather than distribute in ranges

• Example, for 2 PFs and 5 channels:

Advantages:

• No channels re-partition/re-shuffle when the number of channels changes

• Persistent statistics : per-ring history is still meaningful

Channel

index

PF

index

0 0

1 1

2 0

3 1

4 0

21

Design Decisions
Channels Distribution Policy

Observability

• The relation between PF, irq, napi, and queue can be observed via netlink spec.

Channel

index

PF

index

0 0

1 1

2 0

3 1

4 0

22

Design Decisions
Channels Distribution Policy

• Here you can clearly observe our channels distribution policy:
PF0 is at 0000:08:00.0
PF1 is at 0000:09:00.0

Channel

index

PF

index

0 0

1 1

2 0

3 1

4 0

23

Implementation details

Some implementation details:

• Init/destroy flow (probe):

• Create netdev once all PFs are probed

• Symmetrically, destroy netdev whenever any of the PFs is removed

• Software-level communication between PFs

• Collaborate to make it work

• Devcom: mlx5 device driver communication infrastructure

• Use it for a “leader election” algorithm, to chose “primary PF”

24

Implementation details
Primary PF Election

• Desired attributes of leader (Primary PF) election algorithm:

• Simple

• Deterministic

• Predictable

• Persistent between reboots

• Keep same net device name

• Keep same channels indexing/distribution to PFs

• Keep same PF for RSS and RX steering

• Keep admin configuration scripts simple

• Good user experience

• Algorithm: PF with smallest ID is elected a leader

25

Implementation details
RX Steering

RX steering

• RX steering objects are not multiplied

• One instance, belongs to the primary PF

• One RSS table, the primary PF domain

• RSS table and steering rules can redirect incoming traffic to RX queues of other PFs

• At this stage, no need for PF-2-PF software communication

• netdev (and its private areas) are available by this point

• Requires hardware support

26

Implementation details
IRQ and XPS

IRQ and XPS

• Match the cpus according to the channel distribution

• Use existing cpu core distance
proximity scheme

• Alternate PFs as input

• Example:

NUMA node(s): 2

NUMA node0 CPU(s): 0-11

NUMA node1 CPU(s): 12-23

PF0 on NUMA #0

PF1 on NUMA #1

/sys/class/net/eth2/queues/tx-0/xps_cpus:000001

/sys/class/net/eth2/queues/tx-1/xps_cpus:001000

/sys/class/net/eth2/queues/tx-2/xps_cpus:000002

/sys/class/net/eth2/queues/tx-3/xps_cpus:002000

/sys/class/net/eth2/queues/tx-4/xps_cpus:000004

/sys/class/net/eth2/queues/tx-5/xps_cpus:004000

/sys/class/net/eth2/queues/tx-6/xps_cpus:000008

/sys/class/net/eth2/queues/tx-7/xps_cpus:008000

/sys/class/net/eth2/queues/tx-8/xps_cpus:000010

…

/sys/class/net/eth2/queues/tx-20/xps_cpus:000400

/sys/class/net/eth2/queues/tx-21/xps_cpus:400000

/sys/class/net/eth2/queues/tx-22/xps_cpus:000800

/sys/class/net/eth2/queues/tx-23/xps_cpus:800000

Channel

index

PF

index

IRQ

affinity

0 0 0

1 1 12

2 0 1

3 1 13

4 0 2

5 1 14

6 0 3

7 1 15

8 0 4

…

20 0 10

21 1 22

22 0 11

23 1 23

27

Implementation details
RX / TX affinities

TX is perfectly affined by XPS

RX does hash-based RSS in default

• Cannot predict the correct PF / channel

• aRFS?

• Static RX steering rules?

2828

Performance

29

Performance
Setting

DUT setup:

• Processor: Intel(R) Xeon(R) Platinum 8470 CPU @2.00GHz

• Before: Single PF, 200Gbps, on NUMA #0

• After: Socket-Direct system, two PFs (NUMA #0 and NUMA #1), 200Gbps port, single netdev

Setting:

• Multi-ring, multi-core,
multi-stream, on 2 NUMAs.

• 1:1:1 mapping

• Reduce number of variables

• Performance stability

• Apples-to-apples comparison

Network

CPU 1

Core

MEM

PCIe Socket

UPI

NIC

PCIe

I/F

Port

Core



CPU 0

Core

☺ MEM

PCIe Socket

Core

☺

Network

CPU 1

Core

☺MEM

PCIe Socket

UPI

NIC

PCIe

I/F

Port

Core

☺

CPU 0

Core

☺ MEM

PCIe Socket

Core

☺

PCIe

I/F

30

Performance
Setting

Setting:

• Multi-ring, multi-core,
multi-stream, on 2 NUMAs.

• 1:1:1 mapping

BW tests:

1. DUT does RX

2. DUT does TX

• Monitored:

• Inter-processor BW (UPI)

• Memory

• Power

Latency test
Network

CPU 1

Core

MEM

PCIe Socket

UPI

NIC

PCIe

I/F

Port

Core



CPU 0

Core

☺ MEM

PCIe Socket

Core

☺

Network

CPU 1

Core

☺MEM

PCIe Socket

UPI

NIC

PCIe

I/F

Port

Core

☺

CPU 0

Core

☺ MEM

PCIe Socket

Core

☺

PCIe

I/F

31

Performance
BW Tests: Inter-Processor Throughput

• Inter-processor throughput

• pcm tool

RX test:

• Total UPI incoming data traffic:
Before: 15 GBytes
After: 1.4 Gbytes (~10 times less)

• Total UPI outgoing data and non-data traffic:
Before: 49 GBytes
After: 4.4GBytes (~11 times less)

TX test:

• Total UPI incoming data traffic:
Before: 12 Gbytes
After: 0.15 G (~80 times less)

• Total UPI outgoing data and non-data traffic:
Before: 33 G
After: 1.6G (~20 times less)

Network

CPU 1

MEM

PCIe

Socket

UPI

NIC

CPU 0

MEM

PCIe

Socket

Network

CPU 1

MEM

PCIe

Socket

UPI

NIC

CPU 0

MEM

PCIe

Socket

32

Performance
BW Tests: Memory Throughput

Memory observations:

• Remote dma writes do not go to DDIO

• Make the processor cache the primary destination and source of I/O data

• Writes go to RAM, rather than LLC cache

• Expect high memory bandwidth on remote NUMA node

• Expect high latency in latency test

33

Performance
BW Tests: Memory Throughput

pcm-memory

RX test

• Before:

• After:

34

Performance
BW Tests: Memory Throughput

pcm-memory

TX test

• Before:

• After:

35

Performance
BW Tests: Power Consumption

Power consumption

• Measured for the whole system
through external device

• Covers

• NIC

• PCI

• CPUs

• Inter-processor

• Memory

• Etc…

• Measured additional power consumption:

• additional consumption =
 power(during test) – power(idle) Network

CPU 1

MEM

PCIe

Socket

UPI

NIC

CPU 0

MEM

PCIe

Socket

Network

CPU 1

MEM

PCIe

Socket

UPI

NIC

CPU 0

MEM

PCIe

Socket

36

Performance
BW Tests: Power Consumption

Power consumption

• additional consumption =
 power(during test) – power(idle)

• RX test
Before: 172 Watt
After: 164 Watt (5% saving)

• TX test
Before: 119 Watt
After: 112 Watt (6% saving)

• Save power

• Save money

• Save earth ??

• This speaks to everyone…

Network

CPU 1

MEM

PCIe

Socket

UPI

NIC

CPU 0

MEM

PCIe

Socket

Network

CPU 1

MEM

PCIe

Socket

UPI

NIC

CPU 0

MEM

PCIe

Socket

37

Performance
Latency Test

• Latency test: netperf TCP_RR

• Single ring, single core (irq, napi, stack, app)

• Client side is fixed, server side is the DUT.

• One-sided changes in a two-sided latency test.

• Isolated improvement is even higher.

• Run on NUMA #0 core:
Before: 52K transactions/sec
After: 52K transactions/sec (expected)

• Run on NUMA #1 core:
Before: 43K transactions/sec
After: 52K transactions/sec (~20% faster)

• Number became similar to NUMA #0 core

• “local” once again!

Network

CPU 1

MEM

PCIe

Socket

UPI

NIC

CPU 0

MEM

PCIe

Socket

Network

CPU 1

MEM

PCIe

Socket

UPI

NIC

CPU 0

MEM

PCIe

Socket

3838

Future Work

39

Future Work

• Test and extend support beyond 2 PFs for future hardware

• Possible extensions to other function types (VFs, SFs)

• Possibly add dynamic PF addition/deletion to existing netdev

• Adds complexity

• Real use case?

• Improve sysfs observability and control

• Today, sysfs links netdev only to its primary PF, and vice versa

• Hope that more vendors jump in

• Generalize the logic into common netdev APIs

• Software communication of PFs through generic API (non-mlx5)

• drivers/base/component.c ?

• Leader election logic

• XPS and IRQ logic

4040

References

NVIDIA Socket-Direct

https://www.nvidia.com/en-us/networking/ethernet/socket-direct/

Achiad’s netdev 2.2 presentation

https://netdevconf.info//2.2/session.html?shochat-devicemgmt-talk

Netdev 0x18 presentation

https://netdevconf.info/0x18/sessions/talk/multi-pf-single-netdev.html

Kernel patches

https://lore.kernel.org/all/20240215030814.451812-1-saeed@kernel.org/

Linux Kernel Documentation

https://docs.kernel.org/networking/multi-pf-netdev.html

https://www.nvidia.com/en-us/networking/ethernet/socket-direct/
https://netdevconf.info/2.2/session.html?shochat-devicemgmt-talk
https://netdevconf.info/0x18/sessions/talk/multi-pf-single-netdev.html
https://lore.kernel.org/all/20240215030814.451812-1-saeed@kernel.org/
https://docs.kernel.org/networking/multi-pf-netdev.html

41

Questions?

 Thanks

	Slide 1: Multi-PF Net Device
	Slide 2: Background
	Slide 3
	Slide 4: Problem description
	Slide 5: Problem description
	Slide 6: Problem description
	Slide 7: Problem description
	Slide 8: Problem description
	Slide 9: Problem description
	Slide 10: Solution
	Slide 11: Solution
	Slide 12: Solution
	Slide 13: Solution
	Slide 14: Impact on Software
	Slide 15: Software Model
	Slide 16: Software Model
	Slide 17: Software Model
	Slide 18: Software Model
	Slide 19: Design Decisions
	Slide 20: Design Decisions
	Slide 21: Design Decisions
	Slide 22: Design Decisions
	Slide 23: Implementation details
	Slide 24: Implementation details
	Slide 25: Implementation details
	Slide 26: Implementation details
	Slide 27: Implementation details
	Slide 28: Performance
	Slide 29: Performance
	Slide 30: Performance
	Slide 31: Performance
	Slide 32: Performance
	Slide 33: Performance
	Slide 34: Performance
	Slide 35: Performance
	Slide 36: Performance
	Slide 37: Performance
	Slide 38: Future Work
	Slide 39: Future Work
	Slide 40: References
	Slide 41

